Increased reactive oxygen species contribute to high NaCl-induced activation of the osmoregulatory transcription factor TonEBP/OREBP.

نویسندگان

  • Xiaoming Zhou
  • Joan D Ferraris
  • Qi Cai
  • Anupam Agarwal
  • Maurice B Burg
چکیده

The signaling pathways leading to high NaCl-induced activation of the transcription factor tonicity-responsive enhancer binding protein/osmotic response element binding protein (TonEBP/OREBP) remain incompletely understood. High NaCl has been reported to produce oxidative stress. Reactive oxygen species (ROS), which are a component of oxidative stress, contribute to regulation of transcription factors. The present study was undertaken to test whether the high NaCl-induced increase in ROS contributes to tonicity-dependent activation of TonEBP/OREBP. Human embryonic kidney 293 cells were used as a model. We find that raising NaCl increases ROS, including superoxide. N-acetylcysteine (NAC), an antioxidant, and MnTBAP, an inhibitor of superoxide, reduce high NaCl-induced superoxide activity and suppress both high NaCl-induced increase in TonEBP/OREBP transcriptional activity and high NaCl-induced increase in expression of BGT1mRNA, a transcriptional target of TonEBP/OREBP. Catalase, which decomposes hydrogen peroxide, does not have these effects, whether applied exogenously or overexpressed within the cells. Furthermore, NAC and MnTBAP, but not catalase, blunt high NaCl-induced increase in TonEBP/OREBP transactivation. N(G)-monomethyl-l-arginine, a general inhibitor of nitric oxide synthase, has no significant effect on either high NaCl-induced increase in superoxide or TonEBP/OREBP transcriptional activity, suggesting that the effects of ROS do not involve nitric oxide. Ouabain, an inhibitor of Na-K-ATPase, attenuates high NaCl-induced superoxide activity and inhibits TonEBP/OREBP transcriptional activity. We conclude that the high NaCl-induced increase in ROS, including superoxide, contributes to activation of TonEBP/OREBP by increasing its transactivation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitochondrial reactive oxygen species contribute to high NaCl-induced activation of the transcription factor TonEBP/OREBP.

Hypertonicity activates the transcription factor tonicity-responsive enhancer/osmotic response element binding protein (TonEBP/OREBP), resulting in increased expression of genes involved in osmoprotective accumulation of organic osmolytes, including glycine betaine, and in increased expression of osmoprotective heat shock proteins. Our previous studies showed that high NaCl increases reactive o...

متن کامل

MKP-1 inhibits high NaCl-induced activation of p38 but does not inhibit the activation of TonEBP/OREBP: opposite roles of p38alpha and p38delta.

High NaCl rapidly activates p38 MAPK by phosphorylating it, the phosphorylation presumably being regulated by a balance of kinases and phosphatases. Kinases are known, but the phosphatases are uncertain. Our initial purpose was to identify the phosphatases. We find that in HEK293 cells transient overexpression of MAPK phosphatase-1 (MKP-1), a dual-specificity phosphatase, inhibits high NaCl-ind...

متن کامل

Mediator of DNA Damage Checkpoint 1 (MDC1) Contributes to High NaCl-Induced Activation of the Osmoprotective Transcription Factor TonEBP/OREBP

BACKGROUND Hypertonicity, such as induced by high NaCl, increases the activity of the transcription factor TonEBP/OREBP whose target genes increase osmoprotective organic osmolytes and heat shock proteins. METHODOLOGY We used mass spectrometry to analyze proteins that coimmunoprecipitate with TonEBP/OREBP in order to identify ones that might contribute to its high NaCl-induced activation. P...

متن کامل

ATM, a DNA damage-inducible kinase, contributes to activation by high NaCl of the transcription factor TonEBP/OREBP.

High NaCl activates the transcription factor tonicity-responsive enhancer/osmotic response element-binding protein (TonEBP/OREBP), resulting in increased transcription of several protective genes, including the glycine betaine/gamma-aminobutyric acid transporter (BGT1). High NaCl damages DNA, and DNA damage activates ataxia telangiectasia mutated (ATM) kinase through autophosphorylation on Ser-...

متن کامل

Ataxia telangiectasia-mutated, a DNA damage-inducible kinase, contributes to high NaCl-induced nuclear localization of transcription factor TonEBP/OREBP.

High NaCl activates the transcription factor tonicity-responsive enhancer/osmotic response element binding protein (TonEBP/OREBP) by increasing its abundance and transactivation, the latter signaled by a variety of protein kinases. In addition, high NaCl causes TonEBP/OREBP to translocate into the nucleus, but little is known about the signals directing this translocation. The result is increas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 289 2  شماره 

صفحات  -

تاریخ انتشار 2005